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1. Introduction

Bladder cancer is predominantly a disease of older adults, and its
occurrence in young women is exceptionally uncommon ¥, When
advanced disease is present in this demographic, it is typically
aggressive and carries an unfavorable prognosis 17!, Such atypical
presentations demand close examination of potential molecular
drivers and external contributors !"25],
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Synthetic mRNA vaccines introduce heavily modified RNA
molecules and lipid nanoparticle carriers that differ fundamentally
from endogenous cellular transcripts. Residual plasmid DNA,
stabilizing nucleotide analogs, and potential for reverse transcription
raise concerns about genomic disruption, transcriptional
dysregulation, and oncogenic activation 22°!. Reports of plasmid
DNA contamination, enhancer sequences, and persistence of spike
protein expression have intensified scrutiny regarding the role of
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We describe a 31-year-old previously healthy woman who
developed rapidly progressive stage IV bladder cancer within 12
months of completing a three-dose Moderna mRNA vaccination
series (May 2021, June 2021, December 2021). Given the rarity of
advanced bladder cancer in this demographic, her case warranted in-

vaccines in
1 130311

genomic instability and ma-lignant

depth molecular investigation. Multi-omic profiling identified
reproducible oncogenic driver activation, DNA repair impairment,
transcriptomic instability, and evidence of a vaccine-derived
sequence integrated outside a genomic safe harbor ¥, This case
illustrates a potential association between synthetic mRNA
vaccination and the develop-ment of aggressive malignancy,
underscoring the urgent need for systematic genomic surveillance
and independ-ent investigation of the long-term oncogenic risks
associated with mRNA vaccine platforms.

2. Case Presentation

A previously healthy 31-year-old female received three Moderna
mRNA vaccinations (May 2021, June 2021, De-cember 2021) and,

within 12 months, was diagnosed with rapidly progressive stage [V
bladder cancer—an unusual and aggressive presentation for this age.
The patient underwent comprehensive multi-omic profiling using
PBIMA (Molecular Surveillance and Individualized Targeted
Immunotherapy Peptide Editing) and REViSS (Spike-associated
Transcriptional/Translational Instability Surveillance). Analyses
incorporated circulating tumor DNA sequencing from plasma,
whole-blood RNA transcriptomics, and urine exosome proteomics,
enabling a multidimensional evaluation of genomic and
transcriptional dysregulation.

Multi-omic analyses revealed dysregulated oncogenic
drivers (KRAS, ATM, MAPK1, NRAS, CHD4, PIK3CA, SF3B1)
and auxiliary tumor-promoting pathways (TOP1, PSIP1, ERBB2)
across circulating tumor DNA, blood RNA, and urine exosome
proteomics 33361 DNA repair deficiencies (ATM, MSH2) were
also identified, consistent with enhanced susceptibility to genomic
instability. The specific oncogenic drivers, auxiliary promoters, and
DNA repair deficiencies identified through PBIMA multi-omic
profiling are summarized in Table 1, highlighting their biospecimen
presence and functional consequences.

Table 1: Dysregulated Oncogenic Drivers and Auxiliary Tumor-Promoting Pathways Identified by PBIMA Multi-Omic Profiling

Gene Target | Classification Biospecimen Presence Functional Implications

KRAS Oncogenic Driver ctDNA, blood RNA, urine | Constitutive RAS-RAF-MEK-ERK activation — uncontrolled
proliferation, therapy resistance

ATM Oncogenic Driver & | ctDNA, blood RNA, urine | Impaired DNA double-strand break recognition and checkpoint control

DNA Repair — genomic instability

MAPK1 Oncogenic Driver ctDNA, blood RNA, urine | MAPK effector hyperactivation — invasion, survival signaling

NRAS Oncogenic Driver ctDNA, blood RNA, urine | MAPK/PI3K signaling amplification — RAF1 dependence, malignant
transformation

SF3B1 Oncogenic Driver ctDNA, blood RNA Spliceosome disruption — aberrant splicing, transcriptomic
remodeling

CHD4 Oncogenic Driver ctDNA, blood RNA, urine | NuRD chromatin remodeling dysfunction — impaired DNA repair,
angiogenesis, immune evasion

PIK3CA Oncogenic Driver ctDNA, blood RNA PI3K-AKT pathway activation — metabolic rewiring, angiogenesis,
immune suppression

TOP1 Auxiliary Promoter ctDNA, blood RNA, urine | DNA topology dysregulation — replicative stress, transcriptional

(variable) collapse
PSIP1 Auxiliary Promoter ctDNA, blood RNA, urine | Chromatin co-activator upregulation — immune suppression,
(variable) angiogenesis

ERBB2 Auxiliary Promoter ctDNA, blood RNA, urine | Receptor tyrosine kinase amplification — proliferative signaling,

(HER2) invasion, epigenetic reprogramming

MSH2 DNA Repair Gene ctDNA, blood RNA Mismatch repair deficiency — microsatellite instability, mutational
burden

A particularly striking finding was the detection of a host—vector
chimeric read mapping to chr19:55,482,637-55,482,674 (GRCh38),
within cytogenetic band 19q13.42, located ~367 kb downstream of
the canonical AAVSI safe harbor locus and ~158 kb upstream of
ZNF580 at the proximal edge of the zinc-finger (ZNF) gene cluster
137391 This sequence aligned with 100% identity to a segment (bases
5905 - 5924) within the Spike Open Reading Frame (ORF) coding
region (bases 3674 - 7480) of the Pfizer BNT162b2 DNA plasmid
reference (GenBank accession OR134577.1), despite the patient
only receiving Moderna vaccinations. The probability of a random
20-base se-quence perfectly matching a predefined target is
approximately 1 in a trillion, making this alignment statistically
compelling and highly unlikely to be an incidental artifact. The
integration site was located outside the canonical AAVS1 “safe
harbor” and within a gene-dense, recombination-prone regulatory
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region, raising concern for tran-scriptional disruption, fusion
transcript formation, and oncogenic potential %411,

Notably, the integrated fragment corresponded to a 20-
nucleotide segment within the Spike ORF coding region of the
engineered expression cassette. The apparent paradox is explained
by (i) conservation of the Spike ORF across vaccine platforms and
(ii) the absence of Moderna’s official proprietary plasmid reference
in public databases. Be-cause Moderna has not deposited this
sequence, BLAST alignments default to Pfizer’s published
reference. Thus, the event represents a vaccine-derived Spike
cassette fragment integrated into chr19q13.42, at the proximal edge
of the ZNF cluster, with plausible regulatory impact. Supporting
evidence is summarized in Table 2, which docu-ments the mapping
parameters, alignment identity, genomic context, and functional
implications of this integra-tion event.
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Table 2. DNA Frag analysis of host—vector translocation in a Moderna-vaccinated patient, showing a chimeric read at chr19:55,482,637—
55,482,674 (GRCh38), cytoband 19q13.42, with 100% alignment to a segment of the Pfizer BNT162b2 plasmid reference (OR134577.1).
The integration site lies ~367 kb downstream of the canonical AAVS1 safe harbor and ~158 kb upstream of ZNF580, placing it within a
gene-dense, transcriptionally active, recombination-prone region and raising concern for tran-scriptional disruption, fusion transcript

generation, and genomic instability.

Parameter Result

Sample Description

Aggressive bladder cancer (post—-mRNA vaccination)

Vaccination History

Moderna (3 doses: May 2021, June 2021, December 2021)

Host Mapping Human chromosome 19, positions 55,482,637 — 55,482,674 (GRCh38), cytoband 19q13.42
Viral Reference OR134577.1 (Pfizer BNT162b2 expression vector)

Viral Alignment Range Bases 5905 — 5924 (Spike ORF coding region of the engineered expression cassette)
Alignment Identity 20/20 bp (100%)

Overlap Type Chimeric, “gap” alignment

Orientation Host: forward (+); Viral: plus, orientation

Mapping Quality (MQ) Host: 60 (high confidence), Viral: 6 (low confidence)

Edit Distance Host: 4; Viral: 2; Total: 43
Integration Possible Host Translocation: TRUE; Vector Rearrangement: FALSE
Classification

Genomic Context
upstream of ZNF580.

Located at 19q13.42, ~367 kb downstream of the AAVSI safe harbor (chr19:55.09-55.12 Mb) and ~158 kb

Functional Relevance

Gene-dense, recombination-prone, transcriptionally active regulatory region; potential for transcriptional
disruption, fusion transcripts, and genomic instability

3. Discussion

This case raises several mechanistic concerns regarding the potential
role of synthetic mRNA vaccination in ma-lignant transformation.
To our knowledge, it represents the first documented evidence of
genomic integration of vaccine-derived genetic material in a human
subject. Specifically, we identified a vaccine vector—derived
sequence integrated at chr19:55,482,637-55,482,674 (GRCh38),
within cytoband 19q13.42, positioned ~367 kb downstream of the
canonical AAVS1 “safe harbor” and ~158 kb upstream of ZNF580
at the proximal edge of the zinc-finger (ZNF) gene cluster, providing
direct molecular evidence of host—vector genomic interaction 4,
The integration site lies within a gene-dense, transcriptionally active,
recombination-prone regulatory region, a context associated with
increased risk of transcriptional disruption, fusion transcript
formation, and genomic instability 5!,

Second, the paradoxical alignment of the integrated
sequence to the Pfizer BNT162b2 plasmid, despite the patient
having received only Moderna vaccinations, highlights the issue of
cross-platform  plasmid  homology and  manu-facturing
commonalities. The 100% identity to Pfizer’s deposited vector
sequence suggests the presence of shared plasmid backbone
elements or spike-encoding motifs across vaccine platforms.
Because Moderna has not disclosed its proprietary plasmid
sequence, BLAST defaults to Pfizer’s published reference as the
nearest available match, further underscoring the need for
independent disclosure and validation of proprietary vaccine
constructs.

Third, several plausible mechanisms could underlie the
observed integration event 24647l These include (i) persistence and
carry-over of residual plasmid DNA fragments from the in vitro
transcription template, (ii) reverse transcription of spike mRNA
followed by insertion at double-strand DNA breaks, (iii) misrepair
via non-homologous end joining (NHEJ) or microhomology-
mediated end joining (MMEJ), (iv) homologous recombi-nation
when stretches of sequence similarity exist, (v) LINE-1
retrotransposon activity generating cDNA interme-diates, and (vi)
topoisomerase-mediated mis-ligation during DNA unwinding. Each
of these routes is biologically feasible and consistent with the
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concurrent detection of DNA repair deficiencies (ATM, MSH2) in
this patient, which would increase susceptibility to insertional
mutagenesis. Such vulnerabilities may accelerate oncogenic
transformation and malignant progression. Supporting this concern,
Speicher et al. quantified billions of residual plasmid DNA
fragments per vaccine dose, with levels in both bivalent and
XBB.1.5 Pfizer-BioNTech and Modema COVID-19 vaccine
products exceeding regulatory safety thresholds by 36-627-fold,
thereby providing a plausible source of template DNA for persistent
chromosomal integration 28!,

In addition to the host—vector integration event, the patient’s
multi-omic profile revealed a constellation of dysregulated
oncogenic drivers and auxiliary tumor-promoting signals that
together create a permissive landscape for aggressive malignancy
12948491 Activating alterations in KRAS and NRAS converge on the
MAPK signaling cascade, sustaining proliferative signaling and
bypassing normal growth controls [*%5!I. Concurrent dysregula-tion
of MAPKI1 amplifies downstream ERK-driven transcriptional
programs that promote cell cycle progression and survival 133552531,
The chromatin remodeler CHD4 and the RNA splicing factor SF3B1
contribute to epigenetic reprogramming and aberrant transcript
processing, fostering cellular plasticity and tumor adaptability *3*
¥l PIK3CA activation drives PI3K/AKT signaling, enhancing
metabolic fitness, invasion, and resistance to apoptosis, while
auxiliary signals from TOP1, PSIP1, and ERBB2 further reinforce
replication stress tolerance, transcriptional activation, and growth
factor responsiveness ["!%1217.60611 Importantly, deficiencies in
ATM and MSH2 com-promise DNA repair fidelity, predisposing to
genomic instability, accumulation of mutations, and chromosomal
rearrangements 72225621 Together, this pattern of multi-pathway
dysregulation provides a mechanistic basis for the patient’s
unusually rapid disease evolution, linking vaccine-associated
genomic perturbations with a molecular environment primed for
malignant transformation.

Emerging evidence supports a link between mRNA
vaccination and oncogenesis %4, A population-wide 30-month
cohort study of nearly 300,000 residents of Pescara, Italy, found that
receipt of >1 COVID-19 vaccine dose was associated with a 23%
increased risk of cancer hospitalization overall (HR 1.23, 95% CI
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1.11-1.37), with the strongest and statistically significant excess
risks observed for breast cancer (HR 1.54), bladder cancer (HR
1.62), and colorectal cancer (HR 1.35) [61]. Complementing this
epidemiologic evidence, Marik et al. formally defined the syndrome
of COVID-19 mRNA vaccine-induced “turbo cancers,” compiling
clinical case reports, epidemiologic signals, and mechanistic
pathways through which the spike protein may accelerate malignant
transformation via metabolic reprogramming, apoptosis resistance,
angiogenesis, and immune dysregulation '®?!. Taken together, these
reports provide convergent epidemiologic and mechanistic support
for our present case, in which genomic integration and molecular
dysregulation were directly documented.

Together, these observations support a biologically plausible
framework in which synthetic mRNA vaccine expo-sure contributes
to genomic instability, oncogenic signaling, and aggressive disease
evolution. While causality cannot be inferred from a single case, the
convergence of temporal proximity, vector sequence integration, and
reproducible multi-omic dysregulation provides a strong hypothesis-
generating signal. This warrants urgent sys-tematic genomic
surveillance, orthogonal validation with long-read sequencing, and
independent investigation of the long-term oncogenic risks
associated with mRNA vaccine technologies. A schematic overview
of the clinical course, host—vector integration, and multi-omic

dysregulation is shown in Figure 1.
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Figure 1: Genomic Integration and Molecular Dysregulation in Aggressive Bladder Cancer After mRNA Vaccination *Created with
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4. Conclusions

This sentinel case report describes the rapid onset of aggressive stage
IV bladder cancer in a young woman after a Moderna mRNA
vaccination series, marked by direct evidence of genomic integration
of vaccine-derived genetic material. Multi-omic profiling revealed
reproducible oncogenic driver activation, DNA repair deficiencies,
tran-scriptomic instability, and integration of a vaccine vector—
derived sequence outside a genomic safe
harbor(8,30,31,33,38,39,41,58,65]. While causality cannot be
established from a single case, the convergence of tem-poral
proximity, integration evidence, and multi-system molecular
disruption raises serious concern regarding the oncogenic potential
of synthetic mRNA vaccine platforms. These findings highlight the
urgent need for systematic genomic surveillance, independent
validation using orthogonal sequencing methods, and rigorous
investigation into the long-term genomic and oncologic risks of
mRNA vaccination.
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