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Abstract 
Background: Bladder cancer is rare in young women, and advanced presentations are exceptionally uncommon. We report a de-identified case 

of a previously healthy 31-year-old female who developed rapidly progressive stage IV bladder cancer within 12 months of completing a three-

dose Moderna mRNA vaccination series (May 2021, June 2021, December 2021). Case Findings: Comprehensive multi-omic profiling was 

performed using PBIMA (Molecular Surveillance and Individualized Targeted Immunotherapy Peptide Editing) and REViSS (Spike-associated 

Transcription-al/Translational Instability Surveillance), incorporating analyses of plasma-derived circulating tumor DNA, whole-blood RNA, and 

urine exosome proteomics. Dysregulated gene expressions were identified across oncogenic driver genes (KRAS, ATM, MAPK1, NRAS, CHD4, 

PIK3CA, and SF3B1), auxiliary tumor-promoting signals (TOP1, PSIP1, and ERBB2), and broad evidence of genome instability with impaired 

DNA repair (ATM, MSH2). Within circulating tumor DNA, a host–vector chimeric read mapped to chr19:55,482,637–55,482,674 (GRCh38), in 

cytoband 19q13.42, positioned ~367 kb downstream of the canonical AAVS1 safe harbor and ~158 kb upstream of ZNF580 at the proximal edge 

of the zinc-finger (ZNF) gene cluster. This sequence aligned with perfect 20/20 bp identity to a segment (bases 5905–5924) within the Spike open 

reading frame (ORF) coding region (bases 3674–7480) of the Pfizer BNT162b2 DNA plasmid reference (GenBank accession OR134577.1), 

despite the patient only receiving Moderna vaccinations. This apparent paradox is best explained by shared Spike ORF sequences within the 

expression cassette across both vaccine platforms; because Moderna has not deposited its proprietary plasmid sequence in NCBI, BLAST defaults 

to Pfizer’s published reference as the nearest available match. The integration site was located outside the canonical AAVS1 “safe harbor” and 

within a gene-dense, recombination-prone regulatory region, raising concern for transcriptional disruption, fusion transcript formation, and 

oncogenic potential. The probability of a random 20-base sequence perfectly matching a predefined target is approximately 1 in a trillion, making 

this alignment statistically compelling and highly unlikely to be an incidental artifact. Conclusions: This sentinel case report provides the first 

documented evidence of genomic integration of mRNA vaccine-derived genetic material in a human subject, documenting a temporal association 

between COVID-19 mRNA vaccination and aggressive malignancy, reproducible multi-omic evidence of oncogenic signaling, and a non–safe 

harbor host–vector integration event. While causality cannot be established from a single case, the con-vergence of (i) close temporal proximity 

to vaccination, (ii) genomic integration of a vaccine plasmid–derived spike gene fragment, and (iii) consistent transcriptomic and proteomic 

instability across biospecimens represents a highly unusual and biologically plausible pattern. These findings highlight an urgent need for 

systematic genomic sur-veillance, orthogonal validation with long-read sequencing, and larger cohort studies to rigorously define the im-pact of 

synthetic mRNA vaccine platforms on genome integrity and cancer risk. 
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1. Introduction 

Bladder cancer is predominantly a disease of older adults, and its 

occurrence in young women is exceptionally uncommon [1-8]. When 

advanced disease is present in this demographic, it is typically 

aggressive and carries an unfavorable prognosis [9-17]. Such atypical 

presentations demand close examination of potential molecular 

drivers and external contributors [18-25]. 

Synthetic mRNA vaccines introduce heavily modified RNA 

molecules and lipid nanoparticle carriers that differ fundamentally 

from endogenous cellular transcripts. Residual plasmid DNA, 

stabilizing nucleotide analogs, and potential for reverse transcription 

raise concerns about genomic disruption, transcriptional 

dysregulation, and oncogenic activation [26-29]. Reports of plasmid 

DNA contamination, enhancer sequences, and persistence of spike 

protein expression have intensified scrutiny regarding the role of 

http://www.ijirms.in/
https://orcid.org/0000-0002-0710-2929
https://orcid.org/0009-0008-0677-7386
https://orcid.org/0000-0002-0997-6355


International Journal of Innovative Research in Medical Science (IJIRMS) 

 

www.ijirms.in 381 

mRNA vaccines in genomic instability and ma-lignant 

transformation [30,31]. 

We describe a 31-year-old previously healthy woman who 

developed rapidly progressive stage IV bladder cancer within 12 

months of completing a three-dose Moderna mRNA vaccination 

series (May 2021, June 2021, December 2021). Given the rarity of 

advanced bladder cancer in this demographic, her case warranted in-

depth molecular investigation. Multi-omic profiling identified 

reproducible oncogenic driver activation, DNA repair impairment, 

transcriptomic instability, and evidence of a vaccine-derived 

sequence integrated outside a genomic safe harbor [26,32]. This case 

illustrates a potential association between synthetic mRNA 

vaccination and the develop-ment of aggressive malignancy, 

underscoring the urgent need for systematic genomic surveillance 

and independ-ent investigation of the long-term oncogenic risks 

associated with mRNA vaccine platforms. 

2. Case Presentation 

A previously healthy 31-year-old female received three Moderna 

mRNA vaccinations (May 2021, June 2021, De-cember 2021) and, 

within 12 months, was diagnosed with rapidly progressive stage IV 

bladder cancer—an unusual and aggressive presentation for this age. 

The patient underwent comprehensive multi-omic profiling using 

PBIMA (Molecular Surveillance and Individualized Targeted 

Immunotherapy Peptide Editing) and REViSS (Spike-associated 

Transcriptional/Translational Instability Surveillance). Analyses 

incorporated circulating tumor DNA sequencing from plasma, 

whole-blood RNA transcriptomics, and urine exosome proteomics, 

enabling a multidimensional evaluation of genomic and 

transcriptional dysregulation. 

Multi-omic analyses revealed dysregulated oncogenic 

drivers (KRAS, ATM, MAPK1, NRAS, CHD4, PIK3CA, SF3B1) 

and auxiliary tumor-promoting pathways (TOP1, PSIP1, ERBB2) 

across circulating tumor DNA, blood RNA, and urine exosome 

proteomics [11,33-36]. DNA repair deficiencies (ATM, MSH2) were 

also identified, consistent with enhanced susceptibility to genomic 

instability. The specific oncogenic drivers, auxiliary promoters, and 

DNA repair deficiencies identified through PBIMA multi-omic 

profiling are summarized in Table 1, highlighting their biospecimen 

presence and functional consequences. 

Table 1: Dysregulated Oncogenic Drivers and Auxiliary Tumor-Promoting Pathways Identified by PBIMA Multi-Omic Profiling 

Gene Target Classification Biospecimen Presence Functional Implications 

KRAS Oncogenic Driver ctDNA, blood RNA, urine Constitutive RAS–RAF–MEK–ERK activation → uncontrolled 

proliferation, therapy resistance 

ATM Oncogenic Driver & 

DNA Repair 

ctDNA, blood RNA, urine Impaired DNA double-strand break recognition and checkpoint control 

→ genomic instability 

MAPK1 Oncogenic Driver ctDNA, blood RNA, urine MAPK effector hyperactivation → invasion, survival signaling 

NRAS Oncogenic Driver ctDNA, blood RNA, urine MAPK/PI3K signaling amplification → RAF1 dependence, malignant 

transformation 

SF3B1 Oncogenic Driver ctDNA, blood RNA Spliceosome disruption → aberrant splicing, transcriptomic 

remodeling 

CHD4 Oncogenic Driver ctDNA, blood RNA, urine NuRD chromatin remodeling dysfunction → impaired DNA repair, 

angiogenesis, immune evasion 

PIK3CA Oncogenic Driver ctDNA, blood RNA PI3K–AKT pathway activation → metabolic rewiring, angiogenesis, 

immune suppression 

TOP1 Auxiliary Promoter ctDNA, blood RNA, urine 

(variable) 

DNA topology dysregulation → replicative stress, transcriptional 

collapse 

PSIP1 Auxiliary Promoter ctDNA, blood RNA, urine 

(variable) 

Chromatin co-activator upregulation → immune suppression, 

angiogenesis 

ERBB2 

(HER2) 

Auxiliary Promoter ctDNA, blood RNA, urine Receptor tyrosine kinase amplification → proliferative signaling, 

invasion, epigenetic reprogramming 

MSH2 DNA Repair Gene ctDNA, blood RNA Mismatch repair deficiency → microsatellite instability, mutational 

burden 

 

A particularly striking finding was the detection of a host–vector 

chimeric read mapping to chr19:55,482,637–55,482,674 (GRCh38), 

within cytogenetic band 19q13.42, located ~367 kb downstream of 

the canonical AAVS1 safe harbor locus and ~158 kb upstream of 

ZNF580 at the proximal edge of the zinc-finger (ZNF) gene cluster 
[37-39]. This sequence aligned with 100% identity to a segment (bases 

5905 - 5924) within the Spike Open Reading Frame (ORF) coding 

region (bases 3674 - 7480) of the Pfizer BNT162b2 DNA plasmid 

reference (GenBank accession OR134577.1), despite the patient 

only receiving Moderna vaccinations. The probability of a random 

20-base se-quence perfectly matching a predefined target is 

approximately 1 in a trillion, making this alignment statistically 

compelling and highly unlikely to be an incidental artifact. The 

integration site was located outside the canonical AAVS1 “safe 

harbor” and within a gene-dense, recombination-prone regulatory 

region, raising concern for tran-scriptional disruption, fusion 

transcript formation, and oncogenic potential [40,41]. 

Notably, the integrated fragment corresponded to a 20-

nucleotide segment within the Spike ORF coding region of the 

engineered expression cassette. The apparent paradox is explained 

by (i) conservation of the Spike ORF across vaccine platforms and 

(ii) the absence of Moderna’s official proprietary plasmid reference 

in public databases. Be-cause Moderna has not deposited this 

sequence, BLAST alignments default to Pfizer’s published 

reference. Thus, the event represents a vaccine-derived Spike 

cassette fragment integrated into chr19q13.42, at the proximal edge 

of the ZNF cluster, with plausible regulatory impact. Supporting 

evidence is summarized in Table 2, which docu-ments the mapping 

parameters, alignment identity, genomic context, and functional 

implications of this integra-tion event.  
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Table 2. DNA Frag analysis of host–vector translocation in a Moderna-vaccinated patient, showing a chimeric read at chr19:55,482,637–

55,482,674 (GRCh38), cytoband 19q13.42, with 100% alignment to a segment of the Pfizer BNT162b2 plasmid reference (OR134577.1). 

The integration site lies ~367 kb downstream of the canonical AAVS1 safe harbor and ~158 kb upstream of ZNF580, placing it within a 

gene-dense, transcriptionally active, recombination-prone region and raising concern for tran-scriptional disruption, fusion transcript 

generation, and genomic instability. 

Parameter Result 

Sample Description Aggressive bladder cancer (post–mRNA vaccination) 

Vaccination History Moderna (3 doses: May 2021, June 2021, December 2021) 

Host Mapping Human chromosome 19, positions 55,482,637 – 55,482,674 (GRCh38), cytoband 19q13.42 

Viral Reference OR134577.1 (Pfizer BNT162b2 expression vector) 

Viral Alignment Range Bases 5905 – 5924 (Spike ORF coding region of the engineered expression cassette) 

Alignment Identity 20/20 bp (100%) 

Overlap Type Chimeric, “gap” alignment 

Orientation Host: forward (+); Viral: plus, orientation 

Mapping Quality (MQ) Host: 60 (high confidence), Viral: 6 (low confidence) 

Edit Distance Host: 4; Viral: 2; Total: 43 

Integration 

Classification 

Possible Host Translocation: TRUE; Vector Rearrangement: FALSE 

Genomic Context Located at 19q13.42, ~367 kb downstream of the AAVS1 safe harbor (chr19:55.09–55.12 Mb) and ~158 kb 

upstream of ZNF580. 

Functional Relevance Gene-dense, recombination-prone, transcriptionally active regulatory region; potential for transcriptional 

disruption, fusion transcripts, and genomic instability 

 

3. Discussion 

This case raises several mechanistic concerns regarding the potential 

role of synthetic mRNA vaccination in ma-lignant transformation. 

To our knowledge, it represents the first documented evidence of 

genomic integration of vaccine-derived genetic material in a human 

subject. Specifically, we identified a vaccine vector–derived 

sequence integrated at chr19:55,482,637–55,482,674 (GRCh38), 

within cytoband 19q13.42, positioned ~367 kb downstream of the 

canonical AAVS1 “safe harbor” and ~158 kb upstream of ZNF580 

at the proximal edge of the zinc-finger (ZNF) gene cluster, providing 

direct molecular evidence of host–vector genomic interaction [42-44]. 

The integration site lies within a gene-dense, transcriptionally active, 

recombination-prone regulatory region, a context associated with 

increased risk of transcriptional disruption, fusion transcript 

formation, and genomic instability [45]. 

Second, the paradoxical alignment of the integrated 

sequence to the Pfizer BNT162b2 plasmid, despite the patient 

having received only Moderna vaccinations, highlights the issue of 

cross-platform plasmid homology and manu-facturing 

commonalities. The 100% identity to Pfizer’s deposited vector 

sequence suggests the presence of shared plasmid backbone 

elements or spike-encoding motifs across vaccine platforms. 

Because Moderna has not disclosed its proprietary plasmid 

sequence, BLAST defaults to Pfizer’s published reference as the 

nearest available match, further underscoring the need for 

independent disclosure and validation of proprietary vaccine 

constructs. 

Third, several plausible mechanisms could underlie the 

observed integration event [26,46,47]. These include (i) persistence and 

carry-over of residual plasmid DNA fragments from the in vitro 

transcription template, (ii) reverse transcription of spike mRNA 

followed by insertion at double-strand DNA breaks, (iii) misrepair 

via non-homologous end joining (NHEJ) or microhomology-

mediated end joining (MMEJ), (iv) homologous recombi-nation 

when stretches of sequence similarity exist, (v) LINE-1 

retrotransposon activity generating cDNA interme-diates, and (vi) 

topoisomerase-mediated mis-ligation during DNA unwinding. Each 

of these routes is biologically feasible and consistent with the 

concurrent detection of DNA repair deficiencies (ATM, MSH2) in 

this patient, which would increase susceptibility to insertional 

mutagenesis. Such vulnerabilities may accelerate oncogenic 

transformation and malignant progression. Supporting this concern, 

Speicher et al. quantified billions of residual plasmid DNA 

fragments per vaccine dose, with levels in both bivalent and 

XBB.1.5 Pfizer-BioNTech and Moderna COVID-19 vaccine 

products exceeding regulatory safety thresholds by 36-627-fold, 

thereby providing a plausible source of template DNA for persistent 

chromosomal integration [28]. 

In addition to the host–vector integration event, the patient’s 

multi-omic profile revealed a constellation of dysregulated 

oncogenic drivers and auxiliary tumor-promoting signals that 

together create a permissive landscape for aggressive malignancy 
[29,48,49]. Activating alterations in KRAS and NRAS converge on the 

MAPK signaling cascade, sustaining proliferative signaling and 

bypassing normal growth controls [9,50,51]. Concurrent dysregula-tion 

of MAPK1 amplifies downstream ERK-driven transcriptional 

programs that promote cell cycle progression and survival [1-3,35,52,53]. 

The chromatin remodeler CHD4 and the RNA splicing factor SF3B1 

contribute to epigenetic reprogramming and aberrant transcript 

processing, fostering cellular plasticity and tumor adaptability [4,54-

59]. PIK3CA activation drives PI3K/AKT signaling, enhancing 

metabolic fitness, invasion, and resistance to apoptosis, while 

auxiliary signals from TOP1, PSIP1, and ERBB2 further reinforce 

replication stress tolerance, transcriptional activation, and growth 

factor responsiveness [7,10,12,17,60,61]. Importantly, deficiencies in 

ATM and MSH2 com-promise DNA repair fidelity, predisposing to 

genomic instability, accumulation of mutations, and chromosomal 

rearrangements [17,22,25,62]. Together, this pattern of multi-pathway 

dysregulation provides a mechanistic basis for the patient’s 

unusually rapid disease evolution, linking vaccine-associated 

genomic perturbations with a molecular environment primed for 

malignant transformation. 

Emerging evidence supports a link between mRNA 

vaccination and oncogenesis [63,64]. A population-wide 30-month 

cohort study of nearly 300,000 residents of Pescara, Italy, found that 

receipt of ≥1 COVID-19 vaccine dose was associated with a 23% 

increased risk of cancer hospitalization overall (HR 1.23, 95% CI 
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1.11–1.37), with the strongest and statistically significant excess 

risks observed for breast cancer (HR 1.54), bladder cancer (HR 

1.62), and colorectal cancer (HR 1.35) [61]. Complementing this 

epidemiologic evidence, Marik et al. formally defined the syndrome 

of COVID-19 mRNA vaccine-induced “turbo cancers,” compiling 

clinical case reports, epidemiologic signals, and mechanistic 

pathways through which the spike protein may accelerate malignant 

transformation via metabolic reprogramming, apoptosis resistance, 

angiogenesis, and immune dysregulation [62]. Taken together, these 

reports provide convergent epidemiologic and mechanistic support 

for our present case, in which genomic integration and molecular 

dysregulation were directly documented. 

Together, these observations support a biologically plausible 

framework in which synthetic mRNA vaccine expo-sure contributes 

to genomic instability, oncogenic signaling, and aggressive disease 

evolution. While causality cannot be inferred from a single case, the 

convergence of temporal proximity, vector sequence integration, and 

reproducible multi-omic dysregulation provides a strong hypothesis-

generating signal. This warrants urgent sys-tematic genomic 

surveillance, orthogonal validation with long-read sequencing, and 

independent investigation of the long-term oncogenic risks 

associated with mRNA vaccine technologies. A schematic overview 

of the clinical course, host–vector integration, and multi-omic 

dysregulation is shown in Figure 1. 

 

 

Figure 1: Genomic Integration and Molecular Dysregulation in Aggressive Bladder Cancer After mRNA Vaccination *Created with 

Biorender.com 

4. Conclusions 

This sentinel case report describes the rapid onset of aggressive stage 

IV bladder cancer in a young woman after a Moderna mRNA 

vaccination series, marked by direct evidence of genomic integration 

of vaccine-derived genetic material. Multi-omic profiling revealed 

reproducible oncogenic driver activation, DNA repair deficiencies, 

tran-scriptomic instability, and integration of a vaccine vector–

derived sequence outside a genomic safe 

harbor[8,30,31,33,38,39,41,58,65]. While causality cannot be 

established from a single case, the convergence of tem-poral 

proximity, integration evidence, and multi-system molecular 

disruption raises serious concern regarding the oncogenic potential 

of synthetic mRNA vaccine platforms. These findings highlight the 

urgent need for systematic genomic surveillance, independent 

validation using orthogonal sequencing methods, and rigorous 

investigation into the long-term genomic and oncologic risks of 

mRNA vaccination. 
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